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ABSTRACT

A method for the calculation of turbulent shear flows by
an invariant modeling closure of the equations for the second-
order correlations of fluctuating quantities in a turbulent

* medium is described. The relationship of the primary computa-
tional scale used in this model and the longitudinal integral
scale of the turbulence under consideration is determined. With
these results in hand, a technique is described by which it
should be possible to determine the intensity and integral scale
of turbulence measured by instrumented aircraft when only partial
spectra are available. This is possible when the distributions
of mean wind velocity and temperature in the atmosphere in the
vicinity of the tests are available. Preliminary calculations
using the method for a case when both the intensity and integral
scale of turbulence were known yielded very good agreement
between computed and experimental results.
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Ii. INTRODUCTION

Some time ago, the senior author of this paper proposed an
approach to the computation of turbulent shear flows (Ref. 1)
which, because of It; generality, gave promise of allowing one
to make calculations of turbulent atmospheric and vortex motions.
In 1969 this method in its earliest form, was applied to the
calculation of the generation of turbulence in the atmosphere
(Ref. 2). The results of these calculations were intriguing
enough to warrant refinement of the method and its further appli-
cation to calculations of the gene:•ation of atmospheric turbulence.
During fiscal year 1971 support was obtained from two sources
towards these two ends. A moderate level et' support was obtained
from NASA under Contract No. NASW-1868 for further refinement of

the method and a somewhat higher level of support was obtained
from the Air Force for development cf the method for application
to a specific problem faced by the Flight Dynamics Laboratory;
this report discusses the results obtained for t[.e Air- Force.



II. STATEMENT OF THE PROBLEM

A problem that has faced and continues to face the Flight
Dynamics Laboratory's Design Criteria Branch is that of deter-
mining two fundamental characteristics of atmospheric turbulence
under any given set of conditions. These characteristics or
parameters, which define in a gross way the structural response
of aircraft to atmospheric turbulence, are the root mean square
of the vertical component of the turbulent velocity field a
and an integral scale of the turbulent velocity field L . n
general, it is assumed, for work concerned with structural problems,
that the turbulent velocity field is sufficiently isotropic so
that only two integral scales must be considered. One is the
longitudinal integral scale L defined by1

L L L <Uu(X)Ui(X + xl)>dxI (1)L 11LI < ulul>(X) - --

The other is the transverse integral scale L33

L33 = 1 f<ul(x)ul(x + xl)>dxI = L2 2  (2)L3 3 3 -
It is well-known from the theory of isotropic turbulence (Ref. 3)
that these scales are related; namely,

L = LI = 2L33 =2L2 2  (3)

For the calculations involved in practical structural design, it
has been assumed that Eq. (3) is valid, so that the problem facing
the structural designer is that of determining a and L for
any given atmospheric situation. w

In principle, the determination of these two parameters is
straightforward. In practice, however, the task is impossible in
many cases because accurate measurements of turbulence intensity
are not available over a wide enough range of wave numbers.
Consider the spectrum of turbulence shown in Figure 1. This
spectrum, taken from Ref. 4, represents the power spectral
density Ow(a) of the turbulent vertical velocity w' measured
in a thunderstorm, plotted against the reduced frequency S
This spectrum is typical of many atmospheric spectra that havebeen obtained. The trustworthy portion of the spectrum exhibits

a ( - behavior throughout. This behavior, while it is
gratifying to students of turbulent motions, does not permit one

2



to estimate either the integral scale or the intensity of the
turbulence. It has been pointed out by Houbolt that, if the
actual spectrum i- a von Karman spectrum, namely,

nL i+ (L 1"+ L.2)

one can infer from a record such as that shown in Figure 1 only
the following relationship between the intensity and the integral
scale:

2 1 (*5/3,.) 2/ (J
w 0.521 wL

where 0*,(w* represents any point on the minus five-thirds slope
portion of the spectrum. Two spectra satisfying Eq. (4) are shown
in Figure 1. One spectrum is for ow = 32.33 ft/sec and L = 5600
feet, while the second is for o = 25.66 ft/sec and L = 2800 feet.

This example illustrates the difficulty of finding the
quantities ow and L when only partial spectra, such as the one
just discussed, are given. The study supported under the present
contract was an effort to develop a method by which it might be
possible to estimate both aw and L from partial spectra
when the profiles of mean wind and atmospheric temperature were
available.

The technique proposed was the foll.owing. The method of
k invariant modeling permits, as is shown below, the computation of

the turbulent structure of the atmosphere if the local mean wind
S-.and temperature profiles are known. This computation is possible

if a scale parameter Ai , related to L , is assumed. The
relationship between computed a and assumed L is different
than that given in Eq. (5). ThuA, if the relationship of L and
A1  is known, it is possible to determine both L and ow by

* finding the intersection of the curve representing Eq. (5) and
of the curve (htained from the results of the computations.

The study undertaken for the Air Force consisted of two
part,. First, detailed investigations were carried out in which
computations of turbulence in a free shear layer and in an axially
symmetric free jet were made. In these studies, the local value
of A was found in each case that best reproduced, within the

ability of the mathematical model, the turbulent structure of the
particular flow under investigation, This was pos'ible because
of the fairly large amount of detailed information ccncernring the
turbulent structure of these-two flows. The local ,ralue of. Ai

is3
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was then compared with the local value of L as measured in each
case. In this way, it was determined that the following relation-
ship between L and A1 is representative:

A- 0.6L

Second, with this result in hand, a computation was carried out,
as an initial test case, to see if the method discussed above for
recovering atmospheric scales and intensities was plausible.

I 5



III. DESCRIPTION OF AN INVARIANT MODEL OF TURBULENT SHEAR LAYERS

The equation for the time-independent mean velocity in anincompressible turbulent medium was given many years ago by
Reynolds (Ref. 5). It is

paj ~ )(6)

In this paper, bars over a quantity or angular brackets around
a quantity indicate average values of that quantity while primes
indicate the instantaneous fluctuation of the quantity from its
mean value. The mean molecular stress T3  is given by

i

S=gk (5ik + uk,i) (7)
The second-order correlation of the velocity fluctuations that
appears in E4. (6) represents the transport of momentum by turbulent
eddies. and is called tl-e Reynolds stress. An equation for this
second-order tensor was also given by Reynolds. It is, for steady
flow,

= -P<ui - P<u-'uI>u
<ui<u +,U

,<i> + <p (u, + )>.9 u''1 i~k + ki

S..gmn<utlu> m.- 2g<umkn (8)

In the past, it has been customary to carry out investigations
of turbulent shear flows by means of Eq. (6). In these studies
the unknown second-order velocit, correlation term was modeled
in terms of the mean velocity and a length. Computations made in
this manner form the vast bul.c of the literature on turbulent shear
flow calculations, tc the present time. The methods that are now
in use employing this type of modeling, having evolved over a period
of many years, are exceedingly useful and enough empirical data
have been amassed to enable one to calculate solutions to a wide
variety of engineering problems with a great deal of confidence.
There are, however, a numbev of problems faicing engineers today
which require the calculation of turbulent shear flows for which
there is nc existing body of experimental data. Two flows which
come readily to mind are the generation of turbulence and turbulent
transport correlatl icn by the earth's atmosphere and the decay
of a turbulent vortex. In the case of' these two flows, we may ask
ourselves the following questions: "Is there not a somewhat more
basic method of computing turbulent transport phenomena than the

*K I 6



eddy viscosity or mixing length models presently in use?" "Can
not such a method permit us to generalize the experimental results
that presently exist so as to estimate the nature of turbulent
flows that have not yet been investigated experimentally?" The
answers to these two questions are not as straightforward as one
would like. In answer to the question as to whether there is a
more basic method, the reply must be: Yes, but the real difficulty
comes when one tries to establish just how much more fundamental
the proposed new method is to be. If a new method is truly more
fundamental, then it will allow better estimates of unknown flows
than can be made by older techniques. It is fair to say, at the
present time, that there is considerable hope among those who practice
the art of calculating turbulent shear flows that the new methods
now being developed, of which the method to be described here is
but one, take into account enough physics that is not contained
in older models so that a technological advance can be made. It
is as yet too early in the history of these new methods to make any
strong statement as to just how much more powerful they are than
the older methods.

If one wishes to make use of both Eqs. (6) and (8) in computing
turbulent shear flows, the first step must be a choice of models
for those terms in Eq. (8) which are not expressed in terms of the
mean velocity or the second-order velocity correlation. The terms
which must be modeled are

(1) the pressure-strain correlation in the tendency-towards-
isotropy term, namely, <p'(ul',k + uk,i)> ;

(2) the third-order tensor in the velocity diffusion term,
namely, <uiuNu•> ;

(3) the pressure velocity correlation in the pressure diffusion
terms, namely, <utp'>

mn<ui,u?'
(4) the general viscous dissipation term 24gmn uk,m k ,ný

There are many ways in which a modeling of the above-noted
terms may be accomplished. We have tried, for our initial investiga-
tion, to take as simple a model as possible for each term. We
have then attempted to determine by calculation the adequacy of
the chosen model and the sensitivity of the calculated results
to the particular choice of model.

To date the following models have been investigated to some
extent.

(1) For the tendency-towards-isotropy term, we choose, following
Rotta (Ref. 6), the following model:

<Pt(ujk + Uki)> 1 (<xpy - " (9)



where

SK <Umu > +<<W> (10)

and A1  is a scalar length associated with the tendency towards
isotropy and is to be identified. More complicated models of
this term have been discussed by Chou (Ref. 7) and by Hanjalic
and Launder (Ref. 8). To date, we have had considerable success
using the simple Rotta model given above and, in line with our
philosophy of using the simplest possible model that will give
reliable results, we have confined the majority of our computa-
tional studies to the use of Eq (9).

(2) For the velocity diffusion term, we must model <ututut >
The simplest covariant tensor of rank three that is symmetriý In
all three indices that we can form out of the second-order
correlations * s

-iJ>u k +<Uluk>, i +<Uiu, A

This expression has all the tensor and symmetry characteristics
required of our model. To make it dimensionally correct, the above
expression must be multiplied by a scalar velocity and a scalar
length. The simplest scalar velocity we can form from the second-

order correlations is /<um'u'> = q , so we model the tensor
< U'u'u '> asi J k

uJu k~ - 2 q [< U u J' k + < u u k>, i + uu>j] (1

where A2 is a scalar length associated with velocity diffusion
and is also to be identified by matching experimental results.

(3) The pressure velocity correlation <p'u > in the pressure

diffusion term is modeled by analogy with the velocity diffusion
term as

<P 'U• -p PAq<um u•,', (12)

In our work, in order to cut down the number of parameters in our
turbulence model, we have considered only two special cases of
Eq. (12). We have considered the case A3 = A2  and the case where
<p'u1> = 0 , i.e., the case A = 0

k 3
(11) We have considered two models for the expression

_a U,n> appearing in the viscous dissipation term:

(a) gfl\ujim n>= i2  (13)

kl~n ' ;1;z-'ý,-;ý!



and

(b) gu' um' > K (14)(b)g \ k,n: 3X2

In both these models, X is a dissipative length scale. The argu-
ment for choosing the latter expression is that it is expected
that the turbulence will be almost isotropic in that part of the
spectrum responsible for dissipation of turbulent kinetic energy.
Thus, one would expect the dissipation to be almost isotropic even
if the turbulence itself is not. Further, there is experimental
evidence that the loss of shear correlation by viscous action is
relatively much smaller than the loss of kinetic energy by viscous
action. In our initial computations using Eq. (14) as a model of
dissipation, we experienced some difficulties in obtaining solu-
tions. There was a tendency for solutions to develop with negative
values for the mean square velocities when the turbulence became
very nonisotropic. This tendency was overcome by the use of Eq.
(13) for the dissipation model. This model does not have a large
effect on the development of the shear correlations because the
primary contribution to loss of shear with this model is not the
dissipation term but the tendency-towards-isotropy term. Although
the whole question of modeling the dissipation term is still under
investigation, the work reported here was carried out using Eq.
(13), for the reasons stated above.

In the models given above, we would expect that the scalar
lengths A,, A2 , and A3 would all be related to the local integral

scale of the turbulence. These lengths are, in turn, related to
the local scale of the mean motion for the flows we shall investi-
gate here, and we make the assumption in the computations we will
discuss presently that A1 , A2 , and A3  are all proportional

to some local characteristic length 6char of the mean motion
under consideiration.

We will expect the length appearing in the dissipation model
to be related to the microscale of the turbulence which, in turn,
must be related to the integral scale via a Reynolds number in
such a way that production of turbulence is balanced to a large
extent by dissipation.

If the models we have just discussed [Eqs. (9) and (ll)-(13)]
are substituted in the basic equation for the second-order velocity
correlations [Eq. (8)], the resulting equation, taken together
with the momentum and continuity equations, makes a closed set
(see Appendix A). When this set is reduced to boundary layer form,
it is found to form a parabolic system (see Appendix B).



"This set of equations will admit similarity solutions at
high Reynolds numbers as well as permit calculations of turbulent
flows near walls, if one makes the following choice of the relation
between the length scales:

A1 = Cl 6 char 15)

A2  c 2  2 C16char

A -c A C c6
3 1 3 char

and

where X = A/ + b Re (18)

ReA = pqA1/4 (19)

For self-similar free turbulent flows, the structure given
above is all that is needed to compute a turbulent shear layer
or a free jet, provided the five constants, cl, c2 , c3 , a , and b

are given. To find these constants, we must resort to the compari-
son of calculated flow fields with experimental results.

If we wish to compute a boundary layer flow, we must consider
an additional problem. When a wall is present in a shear flow,
we wish to apply the boundary condition at the wall that

where z is measured normal to the surface. In addition, there
should be no diffusion of <u'u'> through the surface, so that

S<ulu >/6z = 0 at z = 0 . Thus, it is reasonable to assume

that near the wall

<uul = Aikzl~n (20)

where Aik is a constant and Tj is a positive constant. But if

there is no diffusion through the wsll, then all that is diffused
towards the wall by viscosity at r. = 6 is dissipated in the region
between z = E and z = 0 . (It i, easily verified that all other
terms in the model equation for <uu k are neglible if e is
small enough.) Thus,

2 dz , (

10



or, using Eq. (20)

S2f ----- dz (1 + T)I

If this relation is to hold for all E - 0 , we must have

S. : az (21)

where
2 2

S=(1 + q

Thus, near a solid surface, we will always assume, in applying our
model, that Eq. (21) holds in the region near the wall.

It is convenient to express this result in terms of A1 .

Near a wall, Eq. (18) becomes

X = Al/vr (22)

Using Eq. (21), we may write

A1 =aV z (23)

Thus, for boundary layer flows, a is another number which must
be found from experimental results.

In our first attempts to construct a model of turbulent shear
flows (Refs. 9 and 10), the following assumptions were made to
construct the simplest possible model of boundary layer flows:

(1) It was assumed that all the large lambdas associated
with inviscid modeling were equal, i.e., A1 = A2 = A3  A.

(2) It was assumed that a was equal to one.

(3) In the outer portion of a boundary layer, A was taken
to be a constant c1  times . (.99 is the value of z for

which 5 is 99% of the free stream velocity). This value was
assumed to hold, independent of z , as the wall was appruached,
until A became equal to Va times z . For smaller value8 of z ,

A was taken equal to v'a z.

With these assumptions, the boundary layer forms of Eqs. (6)

and (8) with appropriate modeling (Appendix B) were solved with
various choices for the parameters a , b , and cI = A/6 9 9  to

produce a developing turbulent boundary layer on a flat plate.

3 11



It was determined at that time that the following choice of
parameters

c =A/ o6
1 A/. 9 9  0.064

a = 2.5 (24)

b = 0.125

yielded a fair representation of a tuiLbUlent boundary layer. The
mean velocity profile and the behavior of skin friction with
Reynolds number were adequately rep.,esented. The distributions
of the second-order correlations within the boundary layer were
reasonable.

The results of this original parameter search were used to
compute a number of other turbulent flows in order to demonstrate
the method (Refs. 9 and 10).

Before proceeding with further applications, -t was considered
necessary that a more detailed parameter search should be made.
In particular, two free turbulent flows - the free jet and the
free shear layer - should be calculated to determine the values of
the parameters c , a , and b that would best fit the exper-
imental results fHr bo~h flows. (The equations for the free shear
layer are the same as those for the boundary layer given in Appendix
B. The equations for the axially symmetric free jet are given
in Appendix C.) The value of c being the ratio of A to some
arbitrarily defined characteristic length in each case i; not an
invariant of the problem and was to be chosen, with fixed values
of the other parameters, to obtain best results in each case.
Once these studies were complete, the model would be used to compute
turbulent boundary layer flows so that, by comparison with experimental
results, values for c and a could be made for this flow.
Hopefully, all flows c~uld be described in a reasonable way by a
single choice of the basic model parameters c ,c• , a , b
and (where appropriate) a. The values of locai A determined
from the values of c in each case were then to ie -ompared
with the local magnithde of the integral scale L in each case.
If it was found that the value of c 1  represented a choice that
amounted to

A const L OL (25)

then it would be astumed that a reasonably invariant model had
been determined.

-12



IV. THE SEARCH FOR NEW MODEL PARAMETERS

Our search for a new model of turbulent shear layers began
with an attempt to describe the axially symmetric free jet with
the original turbulence model obtained for a boundary layer flow.
This model, as mentioned in the previous section, was one for which
A1  A2 = A3 = A . This choice leaves three parameters to be deter-

mined. They are c = A/6 and the two constants a and b
in the expression

X1 A/Va + b. Re,

The method of searching for values for these parameters was as
follows. The equations for a free jet were programmed so as to
solve the system of equations for a free jet developing in the
axial direction. At an arbitrary initial station in the axial
direction, a mean velocity profile and profile's of the pertinent
second-order correlations were arbitrarily assumed. For a given
choice of model parameters (in this case, a , b , and c= A/r ,
where r is the radius for which ý is one-half the

centerline value), the free jet equations were solved for the
development of the jet downstream ,f the initial distributions.
In all cases, essentially self-similar solutions were obtained
far downstream of the start of the ealculation. If a set of para-
meters could be found so that the resulting self-similar flow
agreed with experimental measurements with respect to the rate of
spread, as well as with respect to mean velocity and c:'rrelation
distributions, it would then be assumed that a reasonable turbulence
model had been achieved.

Actually, such calculations were carried out for both free
Jets and two-dimensional free shear layers. With the single A
model, it was found that no combination of parameters a , b , and
c could produce an adequate description of either a free jet or
a free shear layer. In general, it was found that if the parameters
were adjusted so as to give an adequate rate of ýpread of the mean
profile (i.e., if ahe level of the turbulent shear correlation
was large enough) the spread of the correlationu <uiul> by diffu-

sion was always too large. This general result Is Illustrated In
Figure 2 where it is seen that, if the general level of the shear
correlation <ulwl> were to match the experimental data of
Wygnanski and Piedler (Hef. ii) in the refion of max.rmum "hear,
it is clear that far too long a tall of (wUt\ at larrge: r
would result. Thit was a very general result for free ehear flowa
and forces us to consider a more complicated model.

The difficulty that was experienced with the conzntant
model was the existence of too much diffusion relative to the rate
of loas of correlations, either by dis!Ipation or the tendency
towards isotropy. To correct thia difficulty In the .tudiea

13
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reported here, the diffusion lengths A2 and "3 were made
"smaller than A. An idea of the effect of reducing the diffusion
lengths relative to the Isotropy length can be seen from Figure 3.
Here the rms value of the longitudinal velocity fluctuation w'
that has been calculated for several choices of model parameters,
is plotted versus radius in a self-similar free jet. Note that as
the diffusion lengths A2 and A3  (which are c2  times A1 )

are reduced, the amount of diffusion is obviously reduced and the
levels of turbulence on the jet centerline are appreciably increased.

* The effect of the choice of the scale of the isotropy length
A- can be seen from Figure 4. The distribution of longitudinal
t~rbulence intensity is shown as a function of radius for two choices

* of A, relative to the local value of r . It is seen that theSr 5

levels are much lower for the smaller A than for the larger value.
This is what one might expect because of the increased dissipation,
as well as the increased loss of shear correlation by the tendency
towards isotropy when the scale A and, hence, X is made smaller.

The effect of neglecting pressure diffusion can be seen in
Figure 5; the longitudinal velocity fluctuations in a free jet are
shown as a function of radial position for a given choice of model
parameters a , b , c, , and c2 for two Thoice, of c 3 . One

choice is c3 ½ and the second is c3 * 0, I.e., neglect of
pressure diffusion. It is seen that for this cnoice of the other
parameters, the effect of neglecting pressure diffusion is not large.

Having given some idea of how some of the various parameters
entering the model for turbulent shear layers affect the solutions,
we must now discuss the selection of an actual set of parameters.
If one considers only a single type of shear flow that one wishes
to model, say, the free Jet, it is posslble to choose a whole spectrum
of models which will give a good description of the mean spread
of the free jet and the distributl•c• of, say, the longitudinal
turbulent velocity field. To illustrate thi•s poindt, we may refer
to Figure 6. Here we see that two profiles of longitudinal velocity
fluctuation can be obtained with radically different chooices o b
and A * It is obiterved tiiat if one ohooses# smell k one must
also choose a small value of A relative to a charac trs scale
of the jet. What then Is the bAsio difference between these two
solutions? It Is this. POP the iolution with small b and small
A , the balance of the production of turbulence 0s more by diselpa-
ton and leas by diffusion than (or the other cate. Also, for the
case of small b and small A1 , the solutions Arv more Isotroplc
on the Jet centerllne than for the other case.

The choice betweeo the two models hbi-iote is f-urp 6 muýýt

be made on the basi3 of the degree of dlfusn arin 1d he alez' Of
isotropy desired In the calcalated reJui ,. ThI;ht Iv , J.IffIclt

decision to make, for existing expeitiental dnta do nol a.ree a4
to how ipotrope l free jets ar• 4ht wwe e 1) er
seen presently. There, 1;, anothýr way that one cic, decidea between1
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two different models. If one uses the same model to compute two
differeýnt turbulent flows having essentially different geometries,
the model which gives the best results for both flows is, since
we are seeking an invariant model, the one to choose.

As mentioned previously, we have computed self-similar
solutions for a free shear layer as well as for an axially symmetric
free jet. Actually a search for model parameters for each type
of flow was carried out. As a result of these studies, it was
determined that, insofar as the parameter studies have proceeded
at this point, the following model for free turbulent shear flows
gave the best results:

a 2.5

b = 0.125

c = 0.10 (26)

c 3 = 0.10

Also, the value c1 = A /6 0.50 (27)
1 char 05

was found best for both flows, although it was not part of ýthe
plan to have a common value of c . As mentioned above, for the
free jet,

6ch r 5  (28)

The characteristic length for the free shear layer was taken as

6 z (29)
char .25 .75

which is the distance normal to the flow in the shear layer from
the point where the velocity is one-quarter the external driving
velocity to where it is three-quarters this velocity.

In Figures 7 through 14, we show comparisons with experi-
mental data of the velocity correlation profiles computed for both
a free jet and a free shear layer, using the model parameters given
above. The experimental results are taken from the work of
Wygnanski and Fiedler (Refs. 11 and 12), Gibson (Ref. 13), and
Donaldson, Snedeker, and Margolis (Ref. 14).

Figures 7 and 8 show the longitudinal fluctuations in a
free jet and free shear layer, respectively. The agreement between
model calculations and experiment is good in both cases. For the
free jet in Figure 7, it would, perhaps, have been desirable to
have a little more diffusion (larger A and lar~er b) in the
model in an attempt to reduce the overshoot in Kw'w'> near the
centerline of the jet.

Figures 9 and 10 show distributions of normal fluctuations
in both the free jet and the free shear layer. Here we note the
agreement with experimental data is not so good. There appears
to be a little too much diffusion for these cases. Also, note

20
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predictions for the longitudinal velocity correl-
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the very large discrepancy between measured normal fluctuations
on the centerline as reported in three separate experiments. The
data of Gibson show the components of turbulent velocity to be
essentially isotropic on the jet centerline, while those of
Wygnanski and Fiedler and Donaldson, Snedeker and Margolis do not.
From the results shown in Figure 9, it would appear that if one
were to desire more isotropy, one would wish to choose a smaller
value of A and, hence, a smaller value of b This is opposite
to the conclusion drawn from Figure 7.

Figures 11 and 12 show the sidewise components of turbulence
for the free jet and free shear layer, respectively. The agreement
between experiment and computed results is better for the free
jet than for the free shear layer. The reason for this behavior
is not known.

In Figures 13 and 14, we show the shear correlations for
the free Jet and the free shear layer. The agreement in both cases
is fair. It should be noted that the experimental values of shear
correlation from Ref. 11 have been shown as reported (the open
circles) in Figure 14 and also as corrected by us (the solid symbols)
so as to agree with the measured rate of spread of the free shear
layer. A comparlson of' the measured shear and that inferred from
the mean velocit'y profile was reported by Wygnansd and Fiedler
but apparently their computations contained an error. Also shown
in Figure l14 iu the levl of shear that may be inferred from the
mean spread of tle free shear layer studited by Tollmien (ReC. 15)
and Prandtl (Ref. 16) many years ago. it id seen from the results
preosented in Figures 13 and 14 that the model Oives a faIrly 0ood
repr entation of the shear In both the free jet and the free shear

Is nocessary to study firther th, pr-hlem of choic, oft. moaodel para-

have at hand Oxporlnentai d4t4 whkl~h aon dan rel$ on to tq truly
-of the b391c flaw WhiOh is beVing cluae.I

I# odificult to he sea mere sOphiticate Codql %Mtil the testiqn
ofth dgre fIso'tropy In the centerlinr of' a1 freeý Jvt 1-s settled.ý

in addition, oneo should, at thisa point, dettermine If the Addel
just found for free shetAr layers can b, us~ed for s, &model of the
OUrer regions of a boundary layver and giveresalerut.

A-efore turringý to the problem of theý trlet boundary -layer,
It will be- intr-UCqive toq rind a reain'i tenthe Valuest
of A usdIn t.he tree serlayer and the freeJt aclain

ndtI t e generAl mtagnitue Cof the Integral s-crkles nmeasure'd fre such
f lows. In tl cosuatot th~at have Upee maei has; bee-n assugmed
that A ý is ' cntant acros; a% free Jet fri a frreve r"hear layier at
anly glivtn loLdnlpcsU0ta 1i nmsiud,)oe'
to the local sýcale of the reýar. flow. It Isý Well knouln that the
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In Table 1, we present the values of integral scale within
a free Jet, as reported by Wygnanski and Fiedler. The integral
scale tabulated is the longitudinal integral scale

L = Fw'w,>(z 1 f < 1(z)wt(z 2 )> d(z 2 - zl) (30)

for the free Jet.

Table I
integral Scales in a Free Jet after Wygnanskl and Fledler (1e1. 11)

Radial Position Dimensionless Scale Scale Ratio
rlx 1lr A, IL

.5
0 0.448 1.12

.05 0.595 0.84

.10 0.726 0.69

.15 0,8o 0.50
*20 0.855 0.58

Alio p'-.§'Anttd In 74blN I tlihr ta tt o vf Itc vcam$ý-.t i 14 1 .m 1l
A to th 0,Ct41 intcorml ýcate * . ht' , t v-Iue r

10

this rut*E! Cor tho Crve Jct 'j

Far' the free~o zthl'r h4'Aer, hvi~ Iwtisccev n Sn b

Location *In Jet Bit nsvI ol nlest Scaled Scaie Ratio
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A typical value of A1 /L for a free shear layer appears to be
approximately

A1 /L = 0.55 (33)

As mentioned previously, there is not much point in going
further with studies of the present model until it has been applied
to a boundary layer. Note should be made at this point, however,
of other methods of calculating turbulent shear flows - methods
that are similar to the methods being discussed here. As mentioned
before, the idea behind the method is not new. It follows a trend
suggested by Prandtl and Wieghardt (Ref. 1) and follows closely
the general line of approach taken by Rotta (Ref. 6). Since these
two pioneering papers, many more or less similar studies have been
undertaken. Typical of many such studies are those of Glushko
(Ref. 18), Bradshaw, Ferriss & Atwell (Ref. 19), Harlow & Romero
(Ref.20), Gawain & Pritchett (Ref. 21), and Beckwith & Bushnell
(Ref. 22). The more sophisticated of these methods do not assume
a local scale, as we have, but carry along with the computational

scheme an equation for the required scale. Such an equation was
derived by Rotta (Ref. 6) from the equation for the two-point
correlation tensor <.u(A)uj(B)> There is no question but that,

in the future, the metohod presented here should-be enhanced by
coupling the present set of model equations to an equation for the
integral scale. To date, however, we have avoided making this
connection in order to study the character of the model and its
dependence on the scale A without this dependence becoming inex-
tricably mixed with the additional modeling that must be done in
the equation that is used to compute a scale.

Before proceeding further, it must be demonstrated that,
if the present model is applied to a boundary layer, useful results
will be obtained for the same choice of model parameters that has
been made for free turbulent shear flows.
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S.: .. .. -.: .i
V. APPLICATION OF MODEL TO BOUNDARY LAIERS

A If the model of turbulent shear flows is to be applied to
a boundary layer, the parameters c 2 , c 3 , a and b are known.

But, since the characteristic length in a boundary layer is arbitrary
(as it is in the free jet and the free shear layer), we are at
liberty to choose c1 , i.e., the ratio between A and the charac-
teristic length (whi~h, in this case, we take equal to 6 , the

.99
thickness of the layer in which the velocity reaches 99% of its
free stream value).

As discussed in a previous section of this paper, one other
parameter enters the problem, namely, a , the coefficient appearing
in Eq.(21). We have, then,

AI a Vz z (34)

for 0 ! z i c 1 6 9 9 /(aa) , and

A1 =c6 (35)
1 99

for z > c 1 6 9 9 /(aa)

With only these two parameters a and c to determine, the search
is not difficult. The model that has behn found is the following:

a= 2.5

b = 0.125
Sc2 = 0.1

2  (36)

c 3 = 0.1

c = AI/6 = 0.15

a = 0.7/vf = 0.443

The ability of this model of a turbulent shear layer to
predict the known mean properties of turbulent boundary layers
is shown in Figures 15 through 17. In Figure 15, we show the skin
friction developed by our model as it proceeds from a disturbed
laminar layer to a fully turbulent layer. Also shown are the lami-
nar skin friction law and the turbulent law proposed by Coles
(Ref. 23) which is a good fit to experimental data. It is no great
surprise that the general levels of skin friction we computed agree
well with experimental findings inasmuch as the values of a and
c~ were chosen to get these levels corrent. Of more importance

the nearly exact following of the trend of skin friction with
Reynolds number by the model computations.
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Figure 16 shows a comparison of the computed mean velocity
profiles developed by the model in the vicinity of the wall and
the well-known law of the wall as proposed by Coles (Ref. 23).
It may be seen that the law of the wall is not quite achieved by
the present selection of model parameters. The results, however,
are sufficiently accurate to be encouraging.

In Figure 17 we compare the experimentally determined velocity
defect law proposed by Coles (Ref. 23) with the results of our
model computations. It is seen that, once the turbulent boundary
layer is well established, the computational model gives a fairly
good representation of the outer regions of the turbulent boundary
layer.

With these results in hand, we must now consider the relation-
ship of the computational scales used to the longitudinal integral
scales that are found in the outer regions of turbulent boundary
layers. For this purpose, we may use the measurements of Grant
(Ref. 24). When the experimental correlations reported by Grant
for y/6 = 0.66 * In a turbulent boundary layer are integrated to
give the longitudinal integral scale, one obtalios L/60 ; 0.3
Since for our calculations, 6016.99 0.83, we find that

L/6 9 0.25 . Since the cQmputational •cale us;ed was AI/6.99 9
0.15, we find that

Al L z- 0.Q (4

This is a most wlcome result ziInce it zhow,ý thut, ra all the
turbulent 'lows3 we have investigated, the vatio f rthe proper compu-
tational ocale to the longitudInal Inte•ral scale 'As approximhtely
the same.

If~rant derlIned 6 aA that holgtIn the 1,,ouary layc' whr thw
Velocity defect A~wa U4 qalt he rrctloll vqply
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VI. CALCULATION OF ATMOSPHERIC TURUrE1NCE

We may now turn to our original problem, namely, that of
computing atmospheric turbulence. In Ref. 2, The equations for
the generation of atmospheric turbulence were given and computa-
tions were made for some simple shear layers, usinL the originally
determined model parameters [Eqs.(24)]. The model equations for
the calculation of atmospheric turbulence using the latest
modeling are given in Appendix D.

In what follows, we will turn our attention to a calculation
of a case for which atmospheric turbulenc:, has been observed and
measured by an instrumented aircraft and .;or which data were
taken on the mean state of the atmosphere nearby, at a time
reasonably close to the time of the obsEc'vation.

In searching the records available from the LO-LOCAT Phase
III atmospheric turbulence study, it was decided that an appropri-
ate LO-LOCAT run on which to make our study was leg 5 of Test 43
(Category 422224). In Figure 18 we reproduce from Ref. 25 the
normalized atmospheric spectrum ®b determined from this particu-
lar leg of Test 43. The spectrum is complete enough so that both
the turbulent intensity and a longItudinal intý,gral scale can be
esttimated. We shall treat this .ipectrum as a partial spectrum,

i .e, as if only the Q () 5, power portion of this spectrum
was available. Usaing only this ,Information and the information
available t'nom tho itate of the ato -here, we -will attempt to

Cestiftate t;he values of' C /ý I /w 1> and L by ealeulation of'
the turbulence that can be pr.:,duced by the atmosphere for variou*
value- of the scale L

The lo0 for thli fliIht lee o.n 20 ,sept',mbe:' 1i968 Ahow

Ti~e 41 --morning

Air.sPeed (',rue) */e
,•l• •e 75.7 feet

Amblernt mperature .

•h-und •erp~•ture 92,7e

W!nd 33 et/4ec

ait '150 fevt
The 9tate of' the ult'dr. at the Night altlt&ude lit ah n 1A l~ure
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IX

Aircraft- 615 ft/sec
heading 3480 true

Wind- 33.5 ft/sec
from 1690 true

Rg. 19 Wind and aircraft velocities at fli ht
altitude, Test 43, Leg 5 (Ref. 26
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Meteorological data gathered at 0900 hours local standard time
on the same day at a point about 15 miles from the flight leg are
available kef. 27). These data have been plotted in Figure 20;
shown are mean velocity and mean temperature measurements deduced
from the data, with lines faired through the points to define an
atmospheric mean velocity and mean temperature profile. Also
shown are the ground temperature and ambient (at 750 feet) temper-
ature and wind velocity as recorded in the flight test log. The
considerable discrepancies are to be expected, given the distance
and time intervening.

In Figure 21 the temperature profile has been replotted to
show the departure of the local temperature from an adiabatic
temperature profile. It will be seen that the temperature profile
is such that it is unstable from the ground to a height of some
900 feet; thereafter the temperature profile is stable in the
region of interest.

Using these profiles, the equations for the development of
atmospheric turbulence presented in Appendix D can be solved for
the turbulence that will be generated. The only free parameter
in the model is the computational scale A1  From the discussion
presented in previous sections, we will assume, for these calcula-
tions, that this scale behaves as follows.

Near the ground, the scale A is given by the formula

A a az= 0.7z

It will behave In this manner until it reaches some arbitrarily
assumed upper limit A* . Above this altitude, A1  is assumed to
be constant with altitude and equal to A*

Although we know that the integral scale and, hence, the
computational scale A, generally increase with altitude, it is
believed that, since we are interested here in a computation of
turbulence in only the lower levels of the atmosphere, the assump-
tion of A constant above the level of large ground interaction
will be adequate.

Computations were carried out for a range of values of A!
equal to 60, 100, 200, 300, and 400 feet. In Figures 22 and
23, the profiles of Ku'ul> ,<'v'I , <w'wI , and the shear
correlation <u'w'> are plotted as a function of altitude for
values of A* of 100 and 200 feet, respectively. For completeness,

we also show in Figures 24 and 25 plots of the profile, of the
temperature flux correlations <u'T'> and <wtT5 as well as values
of the temperature variance <T,2>
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If, from results such as those plotted in Figures 22 and

23, one determines the values of au = <u'u'>i/2 ' ov <v'v'>1 /2

and O = tw'w>l/2 at the flight altitude (750 feet), a plot ofw
these values as functions of the outer integral scale A* can be
constructed. Such a plot is shown in Figure 26. The v~ry
pronounced effect of the scale A* on the magnitude of the turbu-
lence that can be developed is e~hibited.

We must now compare these results with the spectral results
already discussed. In comparing the three values of A1 /L
determined previously, namely, 0.69 for the free jet, 0.55 for the
free shear layer, and 0.60 for the boundary layer, we select the
relationship

A, A* = o.60L

as representative.

In Figure 27 we show a again as a function of A* as in
w

Figure 26 and as a function of L Also shown is a curve of the

relationship between a and L [a w LI according to Eq.
(5)] obtained from the •pectrum shown in Figure 18, treated as
a partial spectrum. We note that the two curves intersect at
0 = 3.0 ft/sec and L = 290 feet. This may be compared with the
results obtained from the complete spectrum (Ref. 25), namely,
a : 2.84 ft/sec and L = 273 feet.

The remarkable agreement between these results must be
considered fortuitous in view of the many uncertainties involved
in constructing wind and temperature profiles for input to our
program from the few measurements points available and, more
particularly, in assuming these values apply some 15 miles away
at a different time. The discrepancies shown in Figure 20
between the two sets of measurements give an indication of the
validity of our results.

Although the agreement we have just found is better than
expected and, certainly, additional calculations of the type we
have just presented must be carried out, we do believe we have
demonstrated a method of computing atmospheric turbulence that
has sufficient merit to warrant further investigation and
development. The other conclusion that one can draw from the
calculation that we have presented is that, in the future, it
would be most desirable to expend every effort to obtain measure-
ments of the mean state of the atmosphere as close in time and
space to any actual flight measurements of turbulence as is
possible.
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VII. DISCUSSION AND CONCLUSIONS

We have in this report presented a method for calculating
turbulent shear flows that depends on the closure of the
equations of motion at the second-order correlations of fluctuating
quantities. This closure is accomplished by modeling the appropriate
terms in the equations for the second-order correlations in terms
of simple invariant expressions involving the second-order
correlations themselves and several scale parameters. By comparison
of computations with experiment, the relationships between the
various scales were determined and the relationship of these
scales to the integral scale in the turbulent flow that was being
calculated was found. It was found that the basic scale A, used
in the computation was approximately equal to three-fifths of
the longitudinal integral scale of the turbulence under consideration.

Although it should be pointed out that more computations must
be made before a final choice of model and model parameters is
made, it is clear that some of the inconsistencies in the presently
available experimental data on free turbulent shear layers should
be cleared up first.

Once a turbulence model had been &.-tablished and a relation-
Mhip found between the computational scale used and the integral
scale of the turbulent motion under consideration, the method was
applied to the prtiblem of obtainlng, from partial atmo.pherlc
spectra, an estiimate o" the total turbulent intensltles and the
integral 4alesi. By applying the method to a ease of' low altitude
turbulonce where the ••ctrum was complete enough to determine
both the intonait.. and 4cale or turbulence but treating the
sp.•e•trum Ps !r it were Ineomplete, it was found that the magnitude
of the turbulent inten.ity and vcale Could be evaluated If the mean
wind and temperature profiles were known.

Although the metht4 appoears to work well, further studles or
hI is typo ,*hoqld o'e pv-1%Yttied. At t~ho presaent tlmv, It IA felt

that the te ehiue that has bt-ot doeveoped it if sruffiient int••erat
to warrant Support for those additiona!l tutie4. An ni.ortn part
or theose itudiea would be an applIcation of the zetlhod to hiteh
atitude turbulence where the magnitude of the Int'e6ral scale Is
not known.

in riection with guch itudles of hlgh altltude turbulence,
* It lis ! srung IY reeczended that all sib r effrt. be expended to

Obtain itean At.%0pheri1-c w1*nd and tc .peraturp dat~a Ras closeto In
space and time to the actual zeaiurement of turbulence a9 1#



APPENDIX A. CONSTANT DENSITY MODEL EQUATIONS FOR STEADY FLOW

Continuity:

aj 0 (A.1)

Momentum:

-j a ( k) -<uiuf , (A.2)

Stress tensor:

((uulul> - +u > <uu

21  1 k vgkuj~J 'x2 1

+ [Aq <Uujl> I ý + 1~q <l'\A1V )
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APPENDIX B. MODEL EQUATIONS FOR A BOUNDARY LAYER

We use a Cartesian coordinate system (x,y,z) with the free
stream velocity in the x-direction and with a as the coordinate
normal to the wall. The velocity components are denoted by
(u,v,w). With the usual assumptions for a constant pressure
boundary layer, Eqs. (A.1) through (A.3) become

o (B.1)
Z

+V 2 (B.2)

X U IU +) w u' > -2< u 'W '> + < " '> ( B -3 1

oz a ..

- z <-, + v•••>•" . •< , 4 )-

(B-3)

- ~ + -(~t Q.2.Ž *(*~ FI f V I

)Z2)

~-**+ 3A + 2A )WII
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APPENDIX C. MODEL EQUATIONS FOR A FREE JET

We use the cylindrical coordinate system (r,O,z) with the
velocity components denoted by (u,v,w), respectively. The
assumptions for a constant pressure boundary layer are again
applied to Eqs. (A.1) through (A.3), along with the assumption
of axial symmetry, giving

+ U-+ 0 - o (C.1)
ýr r 6z

:W + Lw-q + 1 L--qýUwý <ll (0.2)
+r 5-2r r•r ýr r

-'U'u'> - u'uz > (3AF + 2A)q _u'u

+ A2 q (3 )< -'> 2 ý<

+2 A 3 q(<u'u'>r <vtvt>)]
Fr

(4A 2 + 2A )qS. ... r - , (<u'u'> -<v'v'ý)
r

- <u'u'> - + , Fýi, +

rr r2 ( _ <v, ) -- (C.3)
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r_• 2 J
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APPENDIX D. MODEL EQUATIONS FOR CLEAR AIR TURBULENCE

As in Ref. 2, we simplify the problem somewhat by assuming
the mean flow is in the x direction only and that all the
dependent variables are functions only of time t and altitude
z-. The convective operators in the steady state equations
uJ(6,/6xj) are replaced by a/at

In considering atmospheric motions, we include buoyancy terms
and temperature terms that induce them. We take the actual mean
temperature to be the sum of an adiabatic temperature To(z) and
a departure therefrom denoted T(z,t). The density corresponding
to the adiabatic temperature variation is denoted by po(z) and
we write

1 a0 = Po 6z

The equations before modeling are given in Ref. 2. With the
current modeling, they become

• 25 a(Po<U'W,>)

P0 T =6z - az (D.l)

6 2 T 6(p o<pw 'T(>)
P - = (<u- ' - -z (D.2)

""A, +2po<U'Wý ÷) p PoA1q yP

Po0 a T *I* - o 2 ') - (<•,

+ .£ l2<v - + (62 <.tw'> x: (J)
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